

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS TEKNIK PROGRAM STUDI PEND. TEKNIK MESIN - S1

RENCANA PEMBELAJARAN SEMESTER (RPS)

Program Studi	:	PEND. TEKNIK MESIN - S1
Mata Kuliah/Kode	:	CAD 3D/MES6339
Jumlah SKS	:	3
Tahun Akademik	:	2023
Semester	:	2
Mata Kuliah Prasyarat	:	-
Dosen Pengampu	:	Dr. Apri Nuryanto S.Pd., S.T., M.T.
Bahasa Pengantar	:	Bahasa Indonesia

A. DESKRIPSI MATA KULIAH

Matakuliah CAD 3D berbobot 2 sks dengan 1 sks teori dan 1 sks praktek, bersifat wajib lulus. Peserta mata kuliah diharapkan memiliki pengetahuan awal CAD 2D, Mekanika Teknik dan Elemen Mesin. Matakuliah ini membekali mahasiswa agar memiliki kemampuan memodelkan, merancang dan melakukan analisis teknik dari elemen mesin berbasis software CAD. Isi materi kuliah ini meliputi pemodelan, perancangan dan analisis kerja plat, rangka mesin, sambungan (baut dan las), elemen mesin untuk transmisi daya (poros, pasak, bantalan, roda gigi), dan pegas. Mahasiswa diharapkan mampu melakukan analisis gerakan atau cara kerja mesin, dan mempresentasikan proses perakitan dan atau pelepasan dari suatu assembly. Mahasiswa juga akan diperkenalkan dengan konsep CAD-CAM dan rapid prototyping (3D Printing). Kuliah dilaksanakan baik dengan ceramah, studi kasus (case method), penugasan pengamatan dan analisis kritis terhadap studi kasus CAD 3D, serta proyek kelompok (team based project).

B. CAPAIAN PEMBELAJARAN LULUSAN (CPL) DAN CAPAIAN PEMBELAJARAN MATA KULIAH (CPMK)

Nomor Capaian Pembelajaran Mata Kuliah (CPMK)		Capaian Pembelajaran Lulusan (CPL)		
1 1		Menunjukkan sikap bertanggungjawab atas pekerjaan di bidang keahlian vokasional teknik mesin dan pembelajaran secara mandiri		

2	Mampu merancang komponen mekanik mesin berdasarkan teori dan konsep yang benar	Menguasai konsep, dan teori pendidikan vokasional teknik mesin
3	Mampu membuat simulasi mekanik mesin berdasarkan konsep mekanisasi	Menguasai konsep, dan teori pendidikan vokasional teknik mesin
4	Mampu membangun sistem mekanik dengan metodologi yang benar	Mampu mengaplikasikan konsep keilmuan teknik mesin pada konsentrasi teknik pemesinan, teknik fabrikasi, dan perancangan mesin
5	Mampu menciptakan produk inovatif sesuai kaidah desain	Mampu mengaplikasikan konsep keilmuan teknik mesin pada konsentrasi teknik pemesinan, teknik fabrikasi, dan perancangan mesin
6	Mampu mendesain berdasarkan katalog standar	Mampu mengaplikasikan konsep keilmuan teknik mesin pada konsentrasi teknik pemesinan, teknik fabrikasi, dan perancangan mesin

C. KEGIATAN PERKULIAHAN:

Minggu Ke-	СРМК	Bahan Kajian	Bentuk/ Metode Pembelajaran	Pengalaman Belajar	Indikator Penilaian	Teknik Penilaian	Waktu	Referensi
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	1	Perintah menggambar 3D tingkat lanjut (advance command)	1. Ceramah 2. Diskusi 3. Demonstrasi 4. Eksperimen/Praktek	menerapkan perintah	Mahasiswa mampu membuat fitur 3D komplek melalui diskusi dan eksperimen visual.	1. Kehadiran/Keaktifan 2. Tugas 3. Presentasi	3 x 50 menit	1, 2, 4
2	2, 6	Membaca gambar kerja mesin komplek dan memodifikasi menjadi fitur 3D solid	1. Ceramah 2. Diskusi 3. Demonstrasi	bidang teknik mesin, mahasiswa mampu membuat	Mahasiswa mampu membuat visual 3D advance secara benar dan mandiri	1. Kuis 2. Tugas 3. Presentasi	3 x 50 menit	1, 7
3	2, 4	Membuat perhitungan dan analisis konstruksi frame		kasus lapangan, peserta didik mampu membuat perhitungan dan analisis	Mahasiswa mampu mempresentasikan gambar 3D frame untuk konstruksi bidang teknik mesin secara benar dan teliti	1. Kehadiran/Keaktifan 2. Presentasi 3. Studi Kasus	3 x 50 menit	6, 7
4	2, 3, 4	Membuat perhitungan dan analisis konstruksi frame	1. Diskusi 2. Demonstrasi 3. Eksperimen/Praktek	didik mampu membuat	Mahasiswa mampu mempresentasikan hasil analisis berbantuan Autodesk Inventor	1. Kehadiran/Keaktifan 2. Tugas 3. Presentasi 4. Proyek	3 x 50 menit	1, 5, 6

5	2, 3, 4, 5	pemodelan	Diskusi Demonstrasi Eksperimen/Praktek	Melalui studi literatur mahasiswa dapat merancang dan menghitung poros dan pasak.	Mahasiswa dapat	1. Kehadiran/Keaktifan 2. Presentasi 3. Studi Kasus	3 x 50 menit	1, 2, 4, 7
6	3, 4, 5	pemodelan	Diskusi Demonstrasi Eksperimen/Praktek			1. Kehadiran/Keaktifan 2. Tugas 3. Presentasi 4. Studi Kasus	3 x 50 menit	4, 5, 7
7	2, 4, 5	Ikampanan cictam	2. Demonstrasi	Melalui studi literatur mahasiswa dapat merancang dan menghitung roda gigi	monggambar gambar koria	1. Kehadiran/Keaktifan 2. Tugas 3. Presentasi 4. Proyek	3 x 50 menit	1, 4, 6, 7
8	1, 5, 6	MID semester	2. Diskusi	Melalui studi kasus mahasiswa dapat merancang dan menghitung konstruksi sederhana		1. Tugas 2. Presentasi	3 x 50 menit	1, 4, 7
9		mahasiswa	Diskusi Demonstrasi Eksperimen/Praktek	Berdasarkan studi kasus, peserta didik mampu membuat desain animasi gerak	membuat desain animasi	1. Tugas 2. Presentasi 3. Proyek	3 x 50 menit	1, 4, 5, 7
10	2, 4, 5	mahasiswa	 Diskusi Demonstrasi Eksperimen/Praktek 	dasarkan observasi dan kasus lapangan, peserta didik mampu membuat desain animasi gerak mekanik sederhana	membuat desain animasi gerak mekanik sederhana	1. Kehadiran/Keaktifan 2. Presentasi 3. Studi Kasus 4. Proyek	3 x 50 menit	1, 3, 5, 7

11	3, 5		 Diskusi Demonstrasi Eksperimen/Praktek 	Berdasarkan strategi reverse engineering, peserta didik mampu memodifikasi produk untuk menambah fitur atau nilai sebuah produk	Mahasiswa mampu memodifikasi produk untuk menambah fitur atau nilai sebuah produk	1. Kehadiran/Keaktifan 2. Tugas 3. Presentasi 4. Proyek	3 x 50 menit	1, 4, 7
12	4, 5, 6			mampu mamadifikasi produk	Mahasiswa mampu memodifikasi produk dan mencetak menggunakan 3D printing	Presentasi Studi Kasus Proyek	3 x 50 menit	1, 3, 7
13	2, 5, 6	Mendesain produk berbasis katalog standar	1. Demonstrasi 2. Eksperimen/Praktek	Berdasarkan proses tugas proyek, mahasiswa mampu membuat konstruksi mesin	Mahasiswa mampu membuat rencana kerja untuk konstruksi mesin berbasis komponen standar dan memiliki nilai jual	1. Tugas 2. Presentasi 3. Proyek	3 x 50 menit	1, 3, 7
14	4, 5, 6	0	Diskusi Demonstrasi Eksperimen/Praktek	mahasiswa mampu mengevaluasi produk	Mahasiswa mampu mengevaluasi produk konstruksi mesin berbasis komponen e-catalog	1. Tugas 2. Presentasi 3. Proyek	3 x 50 menit	1, 3, 7
15	56	Membuat desain e-brosur	1. Demonstrasi		Mahasiswa mampu membuat e-brosur yang memiliki nilai jual secara benar dan estetik	1. Tugas 2. Proyek	3 x 50 menit	1, 3, 4, 5,
16	3, 4, 5, 6	Presentasi proyek	Tugas/Kerja Mandiri	Berdasarkan hasil akhir proyek mahasiswa mampu mempresentasikan dan memaparkan nilai lebih produk.	mahasiswa mampu mempresentasikan dan memaparkan nilai lebih produk.	Presentasi Proyek	3 x 50 menit	1, 2, 5, 7

D. KOMPONEN PENILAIAN:

Nomor	Teknik Penilaian	Persentase Bobot Penilaian	Keterangan
1.	Kognitif	50	Akumulasi bobot penilaian maksimal 50%

	a. Kehadiran	5	
	b. Kuis	5	
	c. Tugas	20	
	d. UTS	10	
	e. UAS	10	
2.	Partisipatif	50	Akumulasi bobot penilaian minimal 50%
	a. Studi Kasus	20	
	b. Team Based Project	30	
TOTAL		100	

E. REFERENSI

- 1. Autodesk Inventor Engineer's Handbook. Diakses dari dalam perangkat lunak Autodesk Inventor Professional 2021
- 2. Budynas, Richard G., Nisbet, J. Keith., 2011, Shigley's Mechanical Engineering Design, 9th Edition, McGrawHill, New York.
- 3. Gere, James. N., 2006, Mechanics of Materials, Thomson, Ontario.
- 4. Hamrock, Bernard J., Schmid, Steven R., Jacobson, Bo O., 2005, Fundamentals of Machine Elements, 2nd Edition, McGrawHill, New York.
- 5. Shigley, Joseph E., 1977, Mechanical Engineering Design, 3rd Edition, McGrawHill, Tokyo.
- 6. Ugural, Ansel C., 2004, Mechanical Design an Integrated Approach, 1st edition, MCGrawHill, Singapore
- 7. Shih, RH. 2019. Autodesk Inventor 2020 and Engineering Graphics An Integrated Approach, Mission: SDC Publications

Mengetahui, Ketua Jurusan/Koorprodi

回热深回

[disahkan secara digital pada sistem RPS]

PROGRAM STUDI PEND. TEKNIK MESIN - S1

KODE PRODI: 50324

Yogyakarta, 1 Januari 2024 Dosen Pengampu,

[disahkan secara digital pada sistem RPS]

Dr. Apri Nuryanto S.Pd., S.T., M.T.

NIP: 197404212001121001

